
On the location of the surface-attached globule phase in collapsing polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 13257

(http://iopscience.iop.org/1751-8121/40/44/007)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/44
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 13257–13267 doi:10.1088/1751-8113/40/44/007

On the location of the surface-attached globule phase
in collapsing polymers

A L Owczarek1, A Rechnitzer2, J Krawczyk1 and T Prellberg3

1 Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010,
Australia
2 Department of Mathematics, University of British Columbia, BC V6T-1Z2, Canada
3 School of Mathematical Sciences, Queen Mary, University of London, Mile End Road,
London E1 4NS, UK

E-mail: a.owczarek@ms.unimelb.edu.au, andrewr@math.ubc.ca,
j.krawczyk@ms.unimelb.edu.au and t.prellberg@qmul.ac.uk

Received 20 July 2007, in final form 20 September 2007
Published 16 October 2007
Online at stacks.iop.org/JPhysA/40/13257

Abstract
We investigate the existence and location of the surface phase known as the
‘surface-attached globule’ (SAG) conjectured previously to exist in lattice
models of three-dimensional polymers when they are attached to a wall that
has a short-range potential. The bulk phase, where the attractive intra-polymer
interactions are strong enough to cause a collapse of the polymer into a liquid-
like globule and the wall either has weak attractive or repulsive interactions,
is usually denoted desorbed-collapsed or DC. Recently, this DC phase was
conjectured to harbour two surface phases separated by a boundary where
the bulk free energy is analytic while the surface free energy is singular. The
surface phase for more attractive values of the wall interaction is the SAG phase.
We discuss in more detail the properties of this proposed surface phase and
provide Monte Carlo evidence for self-avoiding walks up to a length 256 that
this surface phase most likely does exist. Importantly, we discuss alternatives
for the surface phase boundary. In particular, we conclude that this boundary
may lie along the zero wall interaction line and the bulk phase boundaries rather
than any new phase boundary curve.

PACS numbers: 05.50.+q, 05.70.Fh, 61.41.+e

(Some figures in this article are in colour only in the electronic version)

The phase transitions of a single isolated polymer in solution continue to attract attention
as single polymers are fundamental components in more complicated modelling scenarios
and these transitions are not yet fully understood. The collapse transition [1] mediated by
the intra-polymer attractive interactions and the adsorption transition [2] when a polymer is
attached to a sticky wall, are two of the key transitions that have been well studied. The
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Figure 1. A 9-step SAW (n = 9) attached to a wall with three visits (mw = 3) to the wall and two
nearest-neighbour contacts (mw = 2, shown as double helices).

situation when both transitions can occur in the same system has been studied less intensely
due to the difficulty of numerical work such as Monte Carlo simulations when two independent
parameters compete. However, with the advent of more powerful computers and sophisticated
algorithms this situation has received some attention.

The standard lattice model for polymers is the self-avoiding walk (SAW) with the sites
of the walk called monomers. The intra-polymer attraction is modelled by a potential energy
εp associated with monomers that are nearest-neighbours on the lattice. These instances will
be referred to as (nearest-neighbour) contacts. To consider adsorption a wall is introduced,
so that the polymer is restricted to one side of the wall, or may visit the wall, with one end
of the polymer (SAW) attached to the wall. Any monomer that visits the wall, other that the
one fixed on the wall, is given a potential energy εw. These monomers will be referred to
as visits. Various different phases are conjectured to exist at different values of the ratio of
the two energies and the temperature (see below). We shall restrict our discussion to three
dimensions, as this is where more complex behaviour can occur (rather than two dimensions,
where more is known due to exactly solved models and conformal field theory).

Consider the simple cubic lattice and the half space z � 0. Consider an n-step self-
avoiding walk ϕ with one end fixed at the origin. We define two Boltzmann weights
ωp = e−εp/kBT and ωw = e−εw/kBT , where kB is Boltzmann’s constant and T is the temperature.
Therefore, when ωw > 1, ωw = 1 and ωw < 1, the interaction of the walk with the wall is
attractive, neutral and repulsive, respectively. When ωp > 1, ωp = 1 and ωp < 1, the
intra-polymer interaction is attractive, neutral and repulsive, respectively.

The partition Zn(ωp, ωw) of the model (see figure 1) is defined as

Zn(ωp, ωw) =
∑

ϕ∈�n

ω
mp(ϕ)
p ωmw(ϕ)

w , (1)

where �n is the set of all n-step SAW restricted to the half space z � 0,mp(ϕ) is the number
of contacts in the walk ϕ and mw(ϕ) is the number of wall visits of the walk ϕ. The bulk
thermodynamic (reduced) free energy is given by the limit

fb(ωp, ωw) = − lim
n→∞

1

n
log(Zn(ωp, ωw)). (2)

The bulk phase diagram is determined by the analytic structure of fb(ωp, ωw). This
phase structure was studied in a series of papers [3–5] where a schematic phase diagram was
proposed (see figure 2). To discuss this diagram it is worth considering two order parameters.
First, let us define the ‘internal density’ ρ̄p as

ρ̄p = lim
n→∞ ρp(n) = lim

n→∞
n

R3
g(n)

, (3)
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Figure 2. Schematic bulk phase diagram for collapsing adsorbing walks in three dimensions
showing the four phases desorbed-extended (DE), desorbed-collapsed (DC), adsorbed-extended
(AE) and adsorbed-collapsed (AC). Also shown are the dashed lines where simulations were
performed.

where Rg(n) is the radius of gyration. Second, we define the density of wall visits ρ̄w as

ρ̄w = lim
n→∞ ρw(n) = lim

n→∞
〈mw〉

n
, (4)

where 〈mw〉 is the ensemble average of the number of visits to the wall.
For any ratio of wall to intra-polymer energies at high temperatures, the polymer is in

the excluded volume state and is entropically repulsed from the wall. It is expected that
Rg(n) ∼ nν as n → ∞, where the three-dimensional excluded volume value has been
estimated as ν = ν3 ≈ 0.5874(2) [6]. The average number of visits is expected to behave
as 〈mw〉 = o(n) (in fact, it is expected to be bounded): this has been numerically verified.
Hence for ωw = ωp = 1, we have ρ̄w = ρ̄p = 0. Since ρ̄p = 0 the polymer is referred to as
‘extended’, and since ρ̄w = 0 the polymer is referred to as ‘desorbed’.

Now let us consider fixed ωw = 1 and varying ωp. That is, we consider the collapse
transition of a polymer fixed to a non-interacting wall as the intra-polymer attraction is
increased. As the temperature is lowered (increasing the effect of the attraction), the collapse
transition is understood to occur at the θ -point, where for high temperatures ρ̄p = 0 (the
extended phase), while for low temperatures ν = 1/3 and ρ̄p > 0 (the collapsed phase): this
is expected to be a second-order phase transition [1]. In both two and three dimensions, this
transition has been extensively studied (see, for example, [7] and references therein).

On the other hand, if we consider fixed ωp = 1 as the temperature is lowered (ωw is
increased), the wall density is expected to change from ρ̄w = 0 (desorbed phase) for high
temperatures to ρ̄w > 0 (adsorbed phase) for low temperatures. This adsorption transition is
also expected to be second order [2] and also has been well studied with this description being
numerically well verified (again also see [7]). Note that for low temperatures the polymer
is in a two-dimensional excluded volume state, where ν = ν2 = 3/4 [8]. We know that a
two-dimensional polymer can also admit a collapse transition, so one naturally can conjecture
a state where the polymer is both adsorbed with ρ̄w > 0 and two-dimensionally collapsed. A
suitable two-dimensional order parameter to describe this transition is

σ̄p = lim
n→∞ σp(n) = lim

n→∞
n

R2
g(n)

. (5)
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When considering the full problem where both ωp and ωw can vary, Vrbová and
Whittington [3, 4] conjectured, and numerically verified, a phase diagram with precisely
these four phases: desorbed-extended (DE) phase with ρ̄p = 0 and ρ̄w = 0 for small ωp and
ωw, desorbed-collapsed (DC) phase with ρ̄p > 0 and ρ̄w = 0 for large ωp and (relatively)
small ωw, adsorbed-extended (AE) phase with σ̄p = 0 and ρ̄w > 0 for (relatively) small ωp

and large ωw, and adsorbed-collapsed (AC) phase with σ̄p > 0 and ρ̄w > 0 for large ωp and
ωw.

Let us return to the bulk desorbed-collapsed phase where ρ̄p > 0 and ρ̄w = 0. One may
now ask: how does ρ̄w approach zero as the length is increased or, rather equivalently, how
does the average number of wall visits 〈mw〉 scale as n is increased. It is believed (see below)
that in the desorbed-extended phase 〈mw〉 = O(1), that is it is bounded. One may be tempted
to assume that this is also the case in the desorbed-collapsed phase. However, recent work
[9–11] suggests that two different asymptotic behaviours can occur inside the latter.

To understand this, let us consider the finite-sized extensive (reduced) free energy
F(n;ωp, ωw) = − log(Zn). From thermodynamics, we expect that

F(n;ωp, ωw) = fb(ωp, ωw)n + o(n), (6)

and as stated above it is the analytic structure of the bulk free energy fb(ωp, ωw) that defines
the phases of our model. Drawing on the standard polymer scaling in [12], the behaviour of
the finite-size free energy in the DE phase is given by

F(n;ωp, ωw) = fb(ωp, ωw)n + (γ1 − 1) log(n) + O(1), (7)

where γ1 is an universal constant for the DE phase (an exponent, in fact). In the DC phase,
the scaling is expected to behave as

F(n;ωp, ωw) ∼ fb(ωp, ωw)n + fs(ωp, ωw)n2/3, (8)

where we have a surface free energy fs(ωp, ωw). This behaviour arises as the polymer assumes
a dense liquid-like drop with a well-defined surface that has area ∝ n2/3. We reiterate that this
‘surface’ is not the wall but rather the surface of the liquid-like polymer drop. In the extended
phase, the polymer does not have a well-defined surface and so fs = 0 as in equation (7).

Importantly, the mean number of wall visits 〈mw〉 can be calculated in the usual way as

〈mw〉 = −∂F (n;ωp, ωw)

∂ log(ωw)
. (9)

Hence,

〈mw〉 ∼ −∂fb(ωp, ωw)

∂ log(ωw)
n − ∂fs(ωp, ωw)

∂ log(ωw)
n2/3. (10)

Since we assume that in both the desorbed-extended and desorbed-collapsed phases 〈mw〉 =
o(n), it is clear that fb(ωp, ωw) should not depend on ωw. Hence, we have

〈mw〉 ∼ −∂fs(ωp, ωw)

∂ log(ωw)
n2/3. (11)

In the desorbed-extended phase fs(ωp, ωw) = 0, which derives (with some other weak
assumptions) the 〈mw〉 = O(1) result for that phase. The question that then arises is the
behaviour of fs(ωp, ωw) for the desorbed-collapsed phase.

In [9–11], it was suggested that the desorbed-collapsed phase accommodates two different
behaviours: one where fs(ωp, ωw) depends on ωw and so 〈mw〉 ∼ n2/3, which was dubbed
the ‘surface-attached globule’ or SAG, and the other in which fs(ωp, ωw) is independent of
ωw, so that 〈mw〉 = O(1) as in the desorbed-extended phase. We shall refer to this second
situation as the ‘fully detached globule’. Physically, the SAG phase can be pictured as the
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Figure 3. Hypothetical boundary for the surface phase transitions: (a) conjectured in [10] and
(b) is an alternative that is suggested in this paper.

liquid drop partially wetting the wall, while the FDG is the state where the wall is dry. (The
adsorbed-collapsed phase is the equivalent of a fully wet state.) This implies a surface phase
transition with a singularity in fs(ωp, ωw) as ωw is varied, whereas fb(ωp, ωw) is analytic at
the same point and no bulk transition occurs.

The evidence given in [9–11] for the two ‘surface’ states was based on the analysis of
relatively short exact enumeration data and some analysis of a directed walk model in two
dimensions. It is therefore important to test this conjecture with data from longer walks. In
this paper, we have simulated, using a recently developed Monte Carlo algorithm [13], the
model described above along various lines in the parameter space for lengths up to 256. In
a previous paper [14], we considered the bulk phase diagram and various low-temperature
finite-size features.

In [10], the boundary between the FDG and SAG was conjectured (see figure 3(a)). Using
a zero-temperature argument [10, 14], it is easy to see that for infinite ωp the transition from
FDG to SAG occurs at ωw = 1. However, the question arises as to the form of the phase
boundary for finite ωp. In [10], it was conjectured that for finite ωp (but large enough so
that the polymer is collapsed) the boundary occurs at values of ωw greater than 1. Hence,
with small but finite attractive wall potential, the polymer is expected to still be in the FDG
state. On the other hand, if there is no entropic penalty to be paid for the globule to sit on
the wall, this gives rise to an alternative hypothesis for the FDG–SAG boundary as shown in
figure 3(b). We note that the phase boundary is unlikely to lie in the region for ωw < 1; here
the wall is repulsive and does not increase the surface entropy of the polymer, so one may
argue that typical configurations have very few visits to the wall. Hence, one conjectures that
for ωw < 1 the surface free energy fs(ωp, ωw) is independent of ωw and 〈mw〉 = O(1). The
central question therefore is whether or not the polymer-drop partially wets the wall as soon
as the wall potential becomes attractive. In the original hypothesis in figure 3(a), a sufficiently
attractive wall is required before the polymer-drop partially wets the wall. The alternative
proposed in figure 3(b) conjectures that any attractive potential at the wall will induce the
polymer-drop to partially wet the wall.

So as to delineate the SAG–FDG phase boundary and to test for the existence of the SAG
phase, we have studied three lines in the phase diagram (see figure 2). One line at ωp = 2.0
was chosen since the θ -point is expected to be around ωp = 1.5 at the lengths considered
here, and so by fixing ωp = 2.0 and varying ωw one explores the desorbed-collapsed phase.
We note that the position of the collapse transition should not move as ωw is varied [4].
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Figure 4. The mean number of visits divided by n2/3 against ωp > 1 for fixed ωw = 1.3.

To further consider the difference between attractive and repulsive wall interactions on the
desorbed-collapsed phase, we have also simulated along lines ωw = 0.8 (repulsive wall visits)
and ωw = 1.3 (attractive wall visits). The second of these lines also allows us to search for
the surface phase boundary proposed in figure 3(a). Note that the position of the adsorption
transition for small ωp moves little as ωp is varied.

In order to explore the desorbed-collapsed phase, we have used the FlatPERM Monte
Carlo algorithm [13]. This algorithm estimates the density of states directly and so allows us
to compute the partition function and related quantities for a wide range of ωp and ωs . The
memory required to store the density of states grows with the cube of the length and so we
were restricted to SAWS of maximum length of 256. Each simulation sampled approximately
109 confirmations. To reduce errors, we performed 25 independent simulations and combined
the resulting data.

Before we discuss the subtleties of the surface phenomena of the SAG and FDG phases,
we first verify that our simulations were correctly identifying the bulk phases. To do this,
we estimated the average end-to-end distance of the polymer which has been established to
scale in the same manner as the (more computationally costly to estimate) radius of gyration.
Hence, we could estimate the size exponent ν at various points. This confirms earlier work
[4]. We considered the point (ωp, ωw) = (1, 1), which is in the desorbed-extended phase, and
so should have ν ≈ 0.59: we find an estimate 0.60(2). Next, for the point (ωp, ωw) = (1, 2)

which is expected to be in the adsorbed-extended phase and so should have ν = 3/4 we find
an estimate 0.75(1). Similarly, for the points (ωp, ωw) = (2, 0.8) and (2, 1.3) which are in the
desorbed-collapsed phase (and we identify below to be in the FDG surface and SAG surface
phases, respectively) and so should have ν = 1/3 we find equal estimates 0.33(2).

We begin our discussion of the surface phenomena by verifying the existence of the SAG
phase. Let us consider the lines ωw = 1.3 (attractive wall visits) and ωw = 0.8 (repulsive
wall visits). In figure 4, the mean number of visits mw(n;ωp, 1.3) divided by n2/3 is plotted
against ωp for 1.0 � ωp � 3.0 and n = 64, 91, 128, 181 and 256. The quantity mw(n)/n2/3

would be expected to converge to a finite (nonzero) value only in the SAG phase. While
there are clearly some corrections to scaling still evident at these lengths, mw/n2/3 seems to
be convergent to a nonzero value for ωp � 1.5, which is the rough location of the collapse
transition at this length (the thermodynamic location has been estimated to be near 1.3).
We have also checked that for ωp 	 1.5 (that is, in the DE bulk phase) mw converges to a
finite value. Hence, the (finite-size location) bulk phase transition at 1.5 signifies a change in
the length scaling of mw(n) from n0 for small ωp (DE bulk phase) to n2/3 for large ωp (DC
bulk phase).
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Figure 5. The mean number of visits against ωp for fixed ωw = 0.8.
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Figure 6. Plot of the variance in the number of visits versus ωp for ωw = 1.3 (a) and ωw = 0.8
(b). This clearly shows a difference between SAG and FDG.

In figure 5, the raw mean number of visits mw(n;ωp, 0.8) is plotted against ωp for
1.0 � ωp � 3.0 and n = 64, 91, 128, 181 and 256. As with ωw = 1.3, one expects that for
ωp < 1.5 (DE bulk phase) that mw(n) will converge to a finite value as n is increased and
indeed this is the case. Additionally, the quantity mw(n) would be expected to converge to
a finite (nonzero) value in the FDG phase. It appears that the collapse transition at around
ωp = 1.5 only effects the value of limn→∞ mw(n) but not whether it is finite or not. There is
no indication of a change of length scaling when varying ωp.

In figure 6, the variance of the number of visits is plotted against ωp for ωw = 1.3 (a) and
ωw = 0.8 (b). In (a) a single peak in the variance is developing around ωp = 1.4 as the length
is increased, whereas in (b) no such peak is developing. We conclude a wall visit transition
occurring at around the same place the bulk contact transition occurs when ωw = 1.3 but not
when ωw = 0.8.

We now turn to consider analysis of the line ωp = 2.0. We first reinforce the analysis of
figures 4 and 5 by plotting the mean number of visits divided by nδ along the line ωp = 2.0.
We see that using δ = 0 we identify the FDG regime for ωw < 1 in figure 7(a). We also
identify the SAG regime by using δ = 2/3 in figure 7(b) for 1 � ωw and at least ωw < 2,
but probably for large ωw also. Finally, the adsorbed-extended phase can be seen for ωw > 3
where δ = 1.
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Figure 7. Plot of the mean number of visits divided by nδ versus ωw for ωp = 2.0. (a) Scaling
in the FDG regime with δ = 0. (b) Scaling in the SAG regime with δ = 2/3. (c) Scaling in the
thermodynamic adsorbed-extended phase with δ = 1.

Considering the variance in the number of contacts (figure 8), the bulk adsorption transition
can be seen as a peak developing around ωw ≈ 2.5, while another smaller peak can be identified
just above 1.0 (see figure 9). While one might try to extrapolate the peak positions in figure 9
to find the thermodynamic limit position, we find that our data is consistent with a wide range
of limits ranging from 0.9 up to 1.15, depending on the choice of the correction exponent used
to do the extrapolation. Certainly, the peaks are moving to smaller values of ωw as the length
is increased.

We now return to the analysis of the line ωw = 1.3. In figure 10, we plot the variances
in wall visits and bulk contacts for lengths 128 and 256 in the same figure, scaling the
bulk variance so that the corresponding peak heights of the wall visit variances are roughly
comparable. This enables us to make an easier comparison of the peak positions at the two
lengths. We reiterate that only one peak occurs in the variance of the wall visits. If indeed
this peak was associated with a surface transition occurring at a higher value of ωp than the
bulk transition, one would expect to see the peaks of the variance of the visits extrapolating to
a higher value of ωp than the peaks of the contacts variances. In both cases, the peaks of the
variances in wall visits occur at smaller values of ωp than the peaks of the bulk contacts, and
both are moving to smaller ωp as the length is increased. We have investigated the scaling
of the peak heights of the variances in wall visits and bulk contacts illustrated in figure 10.
As expected, the peak height of the (normalized) variance of the bulk contacts is consistent
with a logarithmic scaling—an effective scaling as (log(n))2.8 is seen (one expects for very
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clearly see two peaks indicating the possibility of two transitions.
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Figure 9. The variance in the number of visits versus ωw at ωp = 2.0 for different lengths around
the SAG–FDG boundary.
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Figure 10. Variance in wall visits and bulk contacts at ωw = 1.3 versus ωp at lengths 128 and
256. Note that the peak in the variance of the visits is to the left of the peak of the variance of the
number of contacts. The variance of the number of contacts has been scaled so that the peak height
of a given length is approximately the same as the peak height of the variance of the number of
visits at the same length.

large n scaling of (log(n))3/11). The scaling of (normalized) variance of the surface visits is
consistent with a logarithmic scaling using an effective form of (log(n))0.5 (or a weak power
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(a) (b)

Figure 11. Examples of typical configurations of length n = 256 at the points (ωp, ωw) = (2, 0.8)

(a) and (2, 1.3) (b).

of n0.1). Presumably, if both have logarithmic scaling this would be consistent with both
peaks being associated with the bulk collapse transition. The observed behaviour does not
support the scenario in figure 3(a). This suggests that there exists one phase transition in the
thermodynamic limit that gives rise to singularities in the scaling of the contacts and the wall
visits.

Finally, we show typical examples of configurations of length n = 256 in figure 11 at
the points (ωp, ωw) = (2, 0.8) and (2, 1.3) which we have argued are in the FDG and SAG
surface phases, respectively. One clearly sees a globule-like conformation in both examples
with a dense amorphous grouping of monomers. At (2, 0.8) only the monomer tethered to the
wall lies in contact with the wall, while at (2, 1.3) a fair proportion of the monomers of the
surface of the globule lie on the wall as one would expect in a surface-attached globule.

We conclude by summarizing that while we verify the existence of the SAG phase we
find no indication of separate transitions other than those that occur in the bulk phase diagram
or along zero-interaction boundaries. This gives rise to a hypothesized surface phase diagram
as illustrated in figure 3(b).
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